M1.		(a)	oxidation state of N in Cu(NO ₃) ₂ : +5;	1
		oxida	ation state of N in NO ₂ : +4;	1
		oxida	ation product: oxygen;	1
	(1-)			
	(b)	cop	per-containing species: [Cu(H₂O)₀]²·;	1
		shap	be: octahedral;	1
	(c)	(i)	precipitate B: $Cu(H_2O)_4(OH)_2$ or $Cu(OH)_2$ or name;	1
			equation: $[Cu(H_2O)_6]^{2*} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^*$ OR	
			$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$	
			and $[Cu(H_2O)_6]^{2\star} + 2OH^- \rightarrow Cu(H_2O)_4(OH)_2 + 2H_2O;$	1
		(ii)	NH₃ accepts a proton;	1
	(d)	(i)	identity: [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ;	1
			colour: deep blue;	1
			equation:	
			Cu(H ₂ O) ₄ (OH) ₂ + 4NH ₃ → [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ + 2H ₂ O + 2OH ⁻ ;	1

(e)	identity:	[CuCl₄]²-;	1
	colour:	yellow-green;	1
	shape:	tetrahedral;	1
(f)	(i) Is	² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ;	1
	(ii) ro	le of Cu: a reducing agent;	1

1

[17]

M2.		(a) atom	Ligand: - n, ion or molecules which can donate a pair of electrons to a metal ion.	_
		CO-0	rdinate bond:- a covalent bond	1
	in which both electrons are donate by one atom			1
				1
	(b)	(i)	Two correct complex ions	1
			Balanced equation	1
			Two correct colours	2
		(ii)	Complex with a bidentate ligand	1
			Balanced equation	1

	NB en not allowed as a ligand unless structure also given	1
	More molecules/ions formed	1
	Increase in entropy	1
	more stable complex formed	1 Max 2
(c)	ΔE ; energy absorbed by electron, ground to excited state (QoL)	1
	<i>h;</i> Planck's constant or a constant	1
	Change in	
	Oxidation state	1
	Ligand	1
	Co-ordination number Apply list principle to incorrect additional answers	1

M3.	(a)	(i) An atom, ion or molecule which can donate a lone electron pair	1
	(ii)	A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state	
			1
	(iii)	The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms	1

(b) (i) Allow the reverse of each substitution

 $[\text{Co}(\text{H}_2\text{O})_6]^{_{2^*}} + 6\text{NH}_3 \rightarrow [\text{Co}(\text{NH}_3)_6]^{_{2^*}} + 6\text{H}_2\text{O}$

Complex ions

M4.		(a)	C ₂ O ₄ ²⁻ or H ₂ NCH ₂ CH ₂ NH ₂ (1)	
	(b)	[Ag	Cl₂] ⁻ or [Ag(CN)₂] ⁻ or [Ag(NH₃)₂]* (1)	1
	(c)		. $[Co(H_2O)_6]^{2+}$ + 4Cl ⁻ → $[CoCl_4]^{2-}$ + 6H ₂ O rect complex species (1), Balanced (1), Only allow if species correct	2
	(d)		. $[Co(H_2O)_6]^{2*} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2*} + 6H_2O$ rect complex species (1) , Balanced (1) , Only allow if species correct	2
	(e)	Exp	uation: [Co(H₂O)₅]²⁺ + EDTA⁴ → [Co(EDTA)]² + 6H₂O (1) lanation: More molecules on right hand side (1) ropy increases (1)	3

[9]

1